Journal of Applied Mechanics and Technical Physics, Vol. 41, No. 4, 2000

EXPERIMENTAL AND NUMERICAL MODELING
OF THE TURBULENT WAKE OF A SELF-PROPELLED BODY

N. V. Gavrilov, A. G. Demenkov,! UDC 532.517.4
V. A. Kostomakha, and G. G. Chernykh!

The development of the turbulent azisymmetric wake of a self-propelled body is modeled er-
perimentally and numerically. Erperimentally. the self-propulsion regime was implemented in
the wake of a body of revolution whose hydrodynamic resistance was completely compensated
by the pulse of a swirling jet rejected from its trailing part. and the jet-induced swirling was
counterbalanced by the rotation of a part of the body surface in the opposite direction. The
second-order semiempirical turbulence model that includes the differential equation of motion,
the transfer of the normal Reynolds stresses, and the dissipation rate was used to describe this
wake mathematically. and the nonequilibrium algebraic relations were used to determine the
tangential stresses. A satisfactory agreement between the calculation results and the crperi-
mental data is shown. Degeneration of the distant turbulent wake is investigated numerically.

1. The problem of the evolution of the turbulent wake of a body of revolution that moves uniformly
and rectilinearly in an unbounded homogeneous incompressible fluid is considered. The body is equipped with
a propeller whose thrust compensates for the drag, so that the longitudinal component of the total redundant
momentum J in the wake is zero. Generally, the propulsor can swirl the fluid in the wake: therefore, for the
body not to rotate about its longitudinal axis, swirling should be compensated for in one way or another.
Here the total moment of momentum A in the wake is equal to zero. This mode of motion is called a mode
of self-propulsion.

In all the previous experimental studies in which the wake of a self-propelled body was modeled and
studied, nonswirling [1-7] or swirling [8, 9] jets were uscd as propulsors or the required thrust was generated
by a propeller [10-12]. In the absence of swirling, attention was given to satisfaction of the condition J =0,
which is sufficient for creation of the mode of self-propulsion. However. in the presence of rotational motion
in the wake, the circumferential velocity component not only contributes to the total momentum, but also
results in the emergence of the moment of momentum in the wake.

It follows from an analysis of the cited literature that in all the experiments performed with flow-
swirling propulsors, appropriate forces were taken up by one structure or another that supports the model
(for example, tension members for wind-tunnel experiments), and the quantity Af calculated for the wake
of such a model is not zero. In this study, this drawback of the experimental self-propulsion modeling is
eliminated owing to the construction of a model that makes it possible to change the thrust of a propulsor
independently and compensate for the flow swirling created by this propulsor.

The first studies concerning numerical modeling of swirling turbulent wakes are reviewed by Shets
[10]. In [10]. calculation results obtained with the use of a simplified turbulence c-model are presented and
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the drawbacks related to the use of the algebraic Reynolds-stress models and the more general second-order
differential models, which, probably, are due to incomplete experimental data, are indicated. A calculation-
theoretical modeling of swirling wakes was performed in [13-15], in which the self-similarity and degeneration
laws for wakes with a different degree of compensation relative to the moment of momentum and the influ-
ence of background turbulence on the flow evolution in the wake was studied. The classical (e-¢)-model of
turbulence was used in these studies. Degeneration of the Reynolds stresses was not analyzed. The strong
sensitivity of the defect of the longitudinal velocity component to the initial unbalance of the momentum and
the weak dependence of the circumferential velocity component, the turbulence energy, and the wake width
on it were shown. An analysis of the asymptotic behavior of average-velocity pert:i:bations has allowed one
to establish that the presence of even a small tangential velocity component noticeably influences the flow
pattern.

The swirling momentumless turbulent wake with the nonzero moment of momentum that is based on
the hierarchy of second-order semiempirical turbulence models is modeled numerically in [16, 17]. It is shown
that a satisfactory agreement with experimental data [9] can be obtained with the use of a mathematical
model that includes the differential transfer equations of the normal Revnolds stresses and one tangential
Reynolds stress and nonequilibrium algebraic relations for other tangential stresses.

Based on an analysis of the results of calculation-theoretical modeling of swirling turbulent wakes, one
can conclude that there are no satisfactory mimerical models of the swirling turbulent wakes of self-propellant
bodies. The present work was performed with a view toward bridging the gaps available in the study of this
problem.

2. To describe the flow, we use the following system of averaged equations of motion, continuity, and
transfer of normal Revnolds stresses (12}, (v™), and («'?) in the approximation of a thin shear layer:
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Here (x, 7, ) is the cylindrical coordinate system with the origin at the trailing edge of the body (Fig. 1), the
x axis is directed in the direction opposite to the body motion, U, V., W, v/, v/, and «’ are the corresponding
velocity components of the averaged and pulsatory motions, (4'v), (u'w'), and (v'w') are the tangential
Reynolds stresses, and e = ((u") + (v/?) + (w™))/2 is the turbulence energy. The angle brackets mean
averaging. The terms with molecular viscosity are discarded in the smallness assumption.

The tangential turbulent stresses are determined from the Rodi nonequilibrium algebraic relations [18]
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where ay = =Aje/s and Ay = (1 = Co)/(Cy + P/ = 1).
The dissipation rate £ was found by solving the differential transfer equation
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In Eqs. (4)-(6) and (10} and relations (7)-(9), the amount of turbulence energy produced owing to the
averaged motion has the form
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In formulas (1)-(10). the empirical constants are as follows: Cs = 0.22, C, = 0.17, a = 0.93, C; = 0.6.
Co =22, Cop = 145, and C.o = 1.92. The variables of the problem were dimensionalized by using the
undisturbed-flow velocity Uy and the characteristic length D (diameter of the body) as the scales. The
mathematical model given above is based on the model from [19]. The structure of the mathematical model
is due to the experience in numerical modeling of nonswirling momentuinless turbulent wakes in a linearly
stratified fluid [20]. The calculations of the present study represent the initial stage of the problemn of numerical
modeling of the swirling turbulent wakes of self-propellant bodies in a stratified fluid.

As the initial conditions for & = x9, we set the transverse distributions U, W. <. and {(u}u)) (i = 1, 2.
and 3) consistent with experimental data. The undisturbed-flow conditions were specified as r — oo and the
symmetry conditions for U, (ufu}). and = for r = 0 and the antisymmetry conditions for V" and 1V

OU _ o) _ 9=y _yo,
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The conservation laws for the total redundant momenta and the moment of momentum follow from
the mathematical model and appropriate initial and boundary conditions:
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o0
M(z) = 2rpgy /(UVV + (W' w'))r? dr = M(xq). (12)
0
Here U, = U — Ug i= the defect of the longitudinal velocity component and pp = const is the fluid density.
The numerical realization of the model is based on the use of a first-order, finite-difference algorithm
of the ~nproximation on mobile grids that is conservative relative to the conservation laws (11) and (12).
The algorithm and its testing are given in detail in (16, 21}; therefore. we ouly note that in approximating
Eq. (2), in the half-integer nodes of the grid, in the variable r the values of the turbulent-viscosity coefficient
Viw = o (0%} were calculated from the formula [22]

(Vn)ssrg = 2wdier(Vew)i
w/)ikl/2 (’/tw)i:i:l n (Vt,u;)i.

From the difference approximation (2), we obtain a finite difference analog of the conservation law
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equivalent to (11). Here it is assumed that all appropriate mathematical procedures are correct.

3. The experiments were carried out in a low-turbulence wind tunnel whose length is 4 m and whose
characteristic transverse cross section is 0.4 x 0.4 m. The disposition of the model is shown schematically in
Fig. 1. The model is made from an aluminum alloy and is a body of revolution composed from half of an
ellipsoid of revolution with 25- and 35-mm semiaxes in the leading part, a circular cylinder of length 40 mm
in the central part. and the second half of the ellij:=oid in the trailing part. The total length of the model is
110 mm. and its diameter is D = 50 mm.

The model consists of mobile and fixed parts (Fig. 1, 1 and 2, respectively). In the fixed part of the
model. which is supported by the compressed air-supply tube 3 and the tension members 4, an injector and a
DC micromotor are builtin. The diameter of the output orifice of the injector is 6 mm. The mobile part of the
model is put into rotation by the micromotor through an internal frictional hook. The model is positioned on
the axis of symmetry of the working part 5 of the tube at zero angle of attack to the incoming flow. The mode
of operation of the injector and the rotational velocity of the model surface were chosen by varying the air
flow rate through the injector and the power-supply voltage of the micromotor. The self-propulsion condition
(J =0 and A = 0) was assumed to be satisfied if the ratio of the positive part of the integrand in (11) and
(12) to the negative part was 1.00+0.05. The experiments were performed for an air velocity of Up = 15 m/sec
in the working part of the wind tunnel, which corresponds to the Reynolds number Re = UyD/v = 5- 10 (v
is the kinematic-viscosity coefficient).

The measurements were carried out by a thermoanemometer equipped with a linearizer. We used
single- and double-filament gauges made from gold-plated tungsten of diameter 5 pm and length 1.25 mm.
According to the measurement technique of [9], the gauges at each measuring point were oriented relative to
the mean-velocity vector. The experimental data were computer-processed.

4. In the experiments, the transverse distributions of three components of the average-velocity vector
and the normal and tangential Reynolds stresses in the cross sections of the wake 2/D = 5. 7.5, 10, 20, 30,
and 46 were measured. The profile of the turbulence-energy dissipation rate ¢ was found only for »/D = 10.
At the same time, before the main series of experiments. in which the quantities .J and Af were assumed to be
zero, the profiles Uy and (o' 3)"/2 were measured under the conditions where the mobile part of the model did
not rotate and the jet in the trailing part was not blown out. Thes  data were used at the stage of installation
of the model at zero angle of attack and to calculate the drag coefficient of the body ¢; = 8F;/ (ﬂ‘p()DQU()Q),

oC
where the force of hydrodynamic resistance was calculated from the formula F, = 2mpg / UpUirdr. We

0
obtained ¢, = 0.2, which indicates that the model is well streamlined.
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In the mode of self-propulsion, the distributions U {r,z) always have the characteristic feature, i.e.,
the regions in which U, < 0 and U; > 0. The negative values of U}, which are observed on the profiles in
Fig. 2, are caused by the fluid decelerated in the boundary layer on the body, whereas the positive values U,
are ensured by a jet propulsor. Solid curves 1-3 in Fig. 2 show calculation results for /D = 20, 30, and 46.
The initial data were set for 2/D = 10.

In the calculations, the boundary conditions for U, W, e, . and ('u.fz) were transferred from infin-
ity on the line r = r. = 4D (r. was determined in numerical experiments). The main calculation results
were obtained on an r-uniform grid with step h, /D = 0.02. The grid step h,/D on the longitudinal coor-
dinate increased and changed from 0.01 by the formula of the member of a geometrical progression with a
denominator equal to 1.006. To monitor the accuracy, a calculation for h,./D = 0.04 and the initial value
of h./D = 0.02 was carricd out. The deviations of the grid solutions in a norm that is a grid analog of the
norm of continuous-function space did not exceed 1%.

One can see that the numerical model constructed describes quite exactly the behavior of U;(r.z) in
the preaxial wake zone and with smaller accuracy at the periphery. The latter is connected with the drawback
inherent in the second-order mathematical models of turbulence, which do not incorporate flow intermittency
in the outer regions of the wake.

The same injector as in the experiment with a sphere [9] was used as a device which swirls the flow
and creates a jet that compensates for the body drag. The rotation in the jet was counterclockwise. To
attain the zero total moment of momentum. a part of the body surface rotated in the opposite direction.
The measured distributions of the circumnferential component of the average-velocity vector W (r,x) depicted
in Fig. 3 show that the fluid rotates in one direction in the near-axial region of the wake and in the other
direction in the peripheral annular region of the wake. The presence of this additional rotary motion also
determines the basic differences of the realized mode of self-propulsion from those studied previously. For
small r, the relation W (r,z) = r is fulfilled. i.e., the fluid rotates as a solid.

The maximum value of the circurnferential velocity component is of the same order as the value of the
defect of the longitudinal velocity component and is much smaller than the velocity of the incoming flow,
which corresponds to the case of weak swirling. Nevertheless, the contribution of the rotational motion in
the wake to J was taken into account, and it amounted to 8% for /D = 5 and 2% of the positive part of
the first terms in the integrand in (11) for /D = 10.

As one can see in Fig. 3, the calculated profiles VW (r, z) are in agreement with the experimental data
throughout the wake region. The notations in Figs. 3 and 4 are the same as in Fig. 2.

The radial component of the average-velocity vector is negligible. as in the experiments with a sphere
19].
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In momentumless swirling-free wakes, the main body of kinetic energy is concentrated in turbulent

fluctuations already at small distances from the body [23]. A similar situation occurs in this case as well (a
[o o]

swirling wake). In particular. the ratio of the total kinetic energy of the pulsatory motion / erdr to the

oo 0

total kinetic energy of the average motion / (U f /24 2 /2)rdr is 1.9 for a wake cross section of /D = 5 and

6.6 for /D = 30. With increase in x, thisoratio grows and is 49.2 for r/D = 200 according to the calculation
results. The significant level of turbulence energy at a small distance from the body is supported by the
radial gradients of the longitudinal and circumnferential velocity components and corresponding tangential
stresses. The experimental results show that both components of turbulence-energy generation in the energy-
turbulence balance equation are important. the rotational average-velocity component playing a larger role
in the vicinity of the body. This is shown by the ratio

oU A

o UL o AN
'/(uu) 5 rdl//(t}U) prant dr.
0 0

which is equal to 0.08 for 2:/D = 5; however, already for the wake cross section (/D = 30), the influence of
the longitudinal velocity component becomes more noticeable and the ratio is 1.3; for z/D = 200, this ratio
is 2.3.

In the course of calculations, the ratio of the turbulence-energy generation P owing to the averaged-
motion gradients to the dissipation rate ¢ versus /D was analyzed. We obtained P/s < 0.3 for /D € [10.46].
It is known that the classical (e~<)-model of turbulence is suitable only for flows characterized by P/ = I:
therefore, here we use a more complicated mathematical model of turbulence.

The operation of the jet propulsor leads to an increased level of turbulence energy in the neighborhood
of the wake axis. This is seen in Fig. 4. where the transverse distributions of the pulsatory energy at different
distances from the body are shown. In contrast to similar structures behind a towed body, the maximum
values of e are reached on the wake axis in this case. The calculation results for /D = 20. 30, and 16 (solid
curves 1-3) agree well with the experimental data.

Figure 5 illustrates the change in the calculated and measured characteristic scales of turbulence as a

function of distance from the body. Here Uio = |Uio]/Up is the axial value of the defect of the longitudinal

velocity component (the solid curve), W = ‘U’ /Up is the maximum value of the circumferential velocity
max

component in this cross section of the wake (dotted curves), é = eo/ U§ is the turbulence energy on the
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wake axis (the dot-and-dashed curve), and 7/, = (r, /2 /D) -1072 is the characteristic scale of the wake width

(the dashed curve) determined from the condition (u’z)lﬂ(rl/g, z) = 0.5(u*)/2(0, z) [(«*)/2(0, z) is the rms
value of the fluctuations of the longitudinal velocity component on the wake axis|: points 1-4 refer to the
corresponding experimental data.

For correctness of the large-distance calculation results, it is necessary to ensure the closeness to zero
of the initial values of .J and M. With this in view, the experimental distributions were approximated by
cubic splines, and the needed smallness of the values of J and A/ was then reached by small variations
in the resulting functions for large . Two variants of calculations were carried out: J = 5.5 107" and
M =5.4-10"" (for 10 < /D < 3315) in the first variant and J = 2.2 10712 and A/ = 4.2- 10~ in the
second variant (for 10 < x/D < 1464).

The calculations results for both variants agree with the experimental data, almost coinciding for the
scale functions Uyg(x), eg(x), and ryo(z) in the entire range of /D values considered. The main distinction
is observed in the behavior of the function Wy (x) for /D > 50.

At large distances from the body, the dependence of all the scale functions on z is a power dependence
(solid thin straight lines in Fig. 5): within the framework of the mathematical model used, this is one necessary
indication that the self-similarity of the turbulent motion in the wake is reached. We note the following specific
features. If in the turbulent wakes behind the towed bodies the self-similarity is generally reached already at
small distances downstream and, primarily, for first-order momenta. in the momentumless and “momentless”
wake an asymptotic behavior is first observed for the characteristic transverse dimension of the wake and
then for turbulence encrgy, the characteristic scale of the peripheral velocity Wyax, and for the defect of the
longitudinal velocity component Uy only for 2:/D > 1000.

For the first variant of calculation. for large x/D the circumferential velocity component decreases as
Wiax (@) ~ 272 i.e.. more rapidly than the axial-velocity defect Ujp(x) ~ 2719 and, hence, swirling can be
ignored at a certain moment.

It is noteworthy that an analysis of the self-similarity of the turbulent wake for J = M = 0 is very
complicated (sce, e.g., [15]). Our elementary numerical analysis of the asymptotic degeneration is based on
processing of the numerical results. Tt is of interest that in the theoretical study of [24] of swirl laminar flows
of a self-propelled sphere, the asvinptotic representations Ugp(z) ~ 272 and Wiax ~ 2725
given in Fig. 5 were obtained on the basis of the exact Navier-Stokes equations.

Despite the closeness of the indicated degeneration laws at all the distances studied, the flow in the
wake was a developed turbulent flow. This is supported by the value of the turbulent Reynolds number
Rey = v2eA /v calculated according to the Taylor microscale A = /10ev/<. It follows from the calculations
that the axial values of Rey € [37:80] in the range of 2:/D € [10; 2000]: here we have Rey ~ 27925 for large
x/D.

Tn the second variant of calculations, at large distances from the body the self-similar wake with a
finite nonzero moment of momentum occurs. For z/D > 300, we have Wiax ~ 2796, which agrees with the
condition Al = const [see formula (12)] and the resulting value of the parameter in the wake-expansion law
rijy~ 202

Compared with the wake experiments for a towed body, in our experiments performed at the same
distance x/D = 5, the wake width is 1/3 smaller. which is due to the creation of a jet propulsor of rarefaction
on the wake axis and retardation of the separation of boundary layvers on the trailing surface of the body.
Taking into account this circumstance and the considerably smaller rate of increase in the transverse dimen-

close to those

sions of the wake [ry/o(z) ~ 2093 for axisvimmetrie turbulent wakes of towed bodies]. one can conclude that
swirling in the momentumless wake plays a significant stabilizing effect.

Another necessary indication of reaching the self-similarity is the affine similarity of the transverse
profiles of the dimensionless turbulence characteristics in the wake. An example of realization of this mode
of motion in the wake is the self-similar profiles of the defect of the longitudinal and circumferential velocity
components and the turbulence energy in Fig. 6 (the dotted curve refers to the calculation for z/D = 338,
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dot-and-dashed curve to the calculation for /D = 2000, and the solid curve to the calculation for

/D = 3315). As the asymptotic degeneration is reached (see Fig. 5), a similarity of the distributions is
observed on the site /D > 1000 in the wake.

Thus. the dynamics of the axisymmetric wake of a self-propelled body has been modeled experimen-

tally. A numerical low model has been constructed with the use of the second-order semiempirical model
of turbulence. The calculation results agree well with the experimental data. A numerical analysis of the
degeneration of a distant turbulent wake has been carried out.

This work was partially supported by the Russian Foundation for Fundamental Research (Grant Nos.
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